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The problem of convective difussion toward the sphere in laminar flow around the sphere is 
solved by combination of the analytical and net methods for the region of Peclet number A ;S l. 
The problem was also studied for very small values A. Stability of the solution has been proved 
in relation to changes of the velocity profile. 

In our recent studies1
•
2 an approximate solution has been obtained of the problem 

of convective diffusion toward the sphere, around which the liquid flows in laminar 
flow for large values of the Peelet number A. Only the analytical solution has been 
used and thus it was difficult to determine the accuracy and range of validity of the 
results with respect to the parameter A and the angle 9. The differential equation 
describing the concentration distribution in the vicinity of the sphere around which 
the liquid flows has the singularity for 8 = 0°, which is causing certain complication 
in the analytical solution. Modern computer technique has made possible the numefi'.. "
cal solution of this problem in a very wide range of values A and also for small 
angles 8. It has been proved advantageous to combine the analytical and numerical 
solutions so that the analytically obtained terms for the asymptotic case A -+ 00 

were used as empirical for the numerical evaluation up to the value A = 1. The 
qualitative shape of the diffusion flow has been also derived for very small values 
of A. 

Solution of the diffusion problem has been based on the approximative velocity 
profiles derived by Stokes3

• The actual behaviour of the flowing solution differs 
more or less from these approximative relations, while it is very difficult to determine 
quantitatively these differences. Therefore, we have studied stability of the solution 
with respect to the velocity profiles and we came to the conclusion that the final 
solution was little affected by their changes. 

Analytical Solution of the Differential Equation of Convective Diffusion 

The dependence of concentration c of the diffusing compound with the diffusion 
coefficient D on spherical coordinates r, 8, and cp for steady convective diffusion 
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is described by the equation 

Vr • acjar + r-1vs . acja9 + r- 1 sin -1 9 . acjaq> = 

= D(a2cjar2 + 2r- 1 . acjar + r- 2 
• a2cja9 2 + r - 2 cotg 9. acja9 + 

+ r- 2 sin -29. a2 cjaq>2) . 

1219 

(fa) 

If the solution flows linearly, in laminar flow around the sphere with the radius a, 
the concentration is independent of the angle q> i.e. c = c(r, 9) at the orientation 
of the coordinate system according to Fig. 1. The given equation then takes the form 

Vr • acjar + r-Ivs . acja9 = D(a2cjar2 + 2r - 1 
• acjar + 

+ r- 2 
• a2cja92 + r- 2 cotg 9. acja9) . (fb) 

If we assume that far from the sphere the concentration of the flowing solution 
is non-zero and equal to Co and that the dissolved compound on the surface of the 
sphere, due to the very fast chemical reaction or some other very fast operation 
vanishes, then the boundary conditions have the form 

c(a, 9) = 0, lim c(r, 9) = Co • (2a), (2b) 

Some other cases can be transformed by simple modification into the solved problem 
e.g . diffusion of the compound into the pure solvent at constant nOll-zero concentra
tion on the surface of the sphere in laminar flow around it. 

lt is necessary to substitute into the differential Eq. (1 b) the concrete terms for the 
components of flow Vr and Vs. For very small velocities of the flow around the sphere 
v, accurately for values of the Reynolds number Re = avjv satisfying the condition 
Re ~ 1, the equations derived by Stokes3 hold 

FIG. 1 

vr = V cos 9(1 - 1;ajr + -ta3jr3) , 

Vs = -v sin 9(1 - iajr - t a3 jr3). 

Orientation of the Coordinate System 
The arrows denote the flow direction. 
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As we demonstrate later in this study, the given relations for Vr and Vs can be used 
to obtain relatively accurate results up to the values Re >:::: 1. 

The main purpose is the calculation of the concentration gradient on the surface 
of the sphere which is decisive for the magnitude of the diffusion flow of the dissolved 
compound. For its calculation, we solve at first the boundary problem (1 b), (2a,b). 
In this case it is advantageous to use dimensionless quantities. Therefore we introduce 
the relative concentration C, relative distance y from the surface of the sphere 
and the Peelet number A by equations 

C=c/co, y=(r-a)/a, )..=av/D. 

Eq. (1) for C = C(y, 8) will have the form 

where 

o2Cfoy2 + (2(1 + yt 1 
- )..cos 8Pr(Y)) oC/oy = 

-(1 + yt2 o2Cfo82 - ().. sin 8(1 + yt 1 ps(Y) + 

+ cotg 8(1 + yt2) oCfo8, 

P /y) = 1 - }( 1 + y t 1 + -!(1 + y t 3 , 

ps(Y) = 1 - t(l + yt 1 
- t(l + yt 3 

, 

and the boundary conditions (2a) and (2b) become 

C(O, 8) = 0, 

lim C(y, 8) = 1 . 
y-+oo 

(4) 

(5a) 

(SbY 

Similarly as in the study1 we solve the given boundary problem by the iterative 
method. At first we introduce the variable u by substitution 

u = y . f(8) , (6) 

so that the looked for function C becomes a function of variables u and 8. We would 
like to stress that the function f of the angle 8 in substitution (6) can be selected so that 
in the limiting case it would have a physical meaning of a quantity proportional 
to the concentration gradient on the surface of the sphere as is demonstrated in the 
Appendix. It is also advantageous to introduce a new function G instead of C by the 
relation 

C(u,8) = )..1/3. G(u, 8). (7) 

At this choice of the multiplication factor )..1/3 are values of the gradient of function G 
on the surface for 8 =1= ° in the limiting case).. -+ 00 finite nad non-zero. By intro-
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duction of substitutions (6), (7) into Eq. (4), we obtain for the function G the fol
lowing differential equation 

(F + U')2 u2jU + U)2) a2Gjau2 + (2f2jU + u) - Af cos 9 P.(ujf) + 

+ f· !"ujU + uY + !'ujU + u) A sin 9 Ps(ujf) + f. !'ujU + U)2 cotg 9) . 

. aGjau = - f2jU + uY a2Gja92 - 2f. !'ujU + U)2 a2Gjau a.9 -

- (Af sin 9jU + u) Ps(ujf) + F cotg 9jU + U)2) aGja9, (8) 
.or 

A . a2Gjau2 + B . aGjau = F , (9) 

where the significance of quantities A, B, and F results from comparison of Eq. (9) 
with Eq. (8). The boundary conditions (5a) and (5b) do change to 

G(o, 9) = 0, 

lim G(u, 9) = A- J
/
3 

• 

The iteration scheme is defined recurrently by the equation 

where 

F n - 1 = - FjU + uY a2Gn _ 1 ja92 - 2f· !'ujU + uy a2Gn _ 1 jau a9 -

- (Afsin 9jU + u) Ps(ujf) + F cotg 9jU + uy). aGn - l ja9. 

(lOa) 

(JOb) 

(11) 

Moreover each iteration Gn must satisfy the boundary conditions (IOa,b). The initial 
jteration Go is chosen as a function independent of 9 e.g. in the form 

At this choice is Fo = ° and for Gl thus holds 

(12) 

which is an ordinary differential equation including the variable 9 as a parameter. 
Its solution has at the satisfaction of boundary conditions (JOa,b) the form 
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1222 Kimla, Micka: 

From relations (7) and (6) we obtain 

(oCjOY)y=o = (oCJou)u=o . au/ay = A1/3(aGJou)u=o . f(8). (14) 

For the first iteration G1(u, .9) there holds according to Eq. (13) 

(oG 1/au)u=oof(.9) = ;.-1/3 (J~exp (- f:B/Adt)dWrl . f(8) = 

= a o(.9) + a1(8);.-1/3 + ai8)A-2/3 + ... (15) 

(see Appendix). So the choice of function Gin Eq. (7) is explained and the statement 
following the equation is also proved as 

lim (aG 1/au)u=o . f(8) = ao(8) . 
1. ... '" 

From derivation of Eq. (15) results that the expression of the gradient offunction 
G 1 in the form of an infinite series is theoretically justified only for relatively large 
values of A and not too small values of angle .9. The coefficients in the series (15) 
depend on the function f whose choice is made in relation with the calculation of the 
second iteration G2 . For it holds (see (11) 

where Fl is the known function calculated with the use of the first iteration G1 . 

For gradient of the second iteration G2 the infinite series is derived analogously 
as for G1 

and this again for suitable regions of quantities A and .9. In the Appendix it is proved 
that if the function f is chosen as 

f(.9) = k- 1 
• (A/3)1/3 .](8) , (17a) 

where 

(17b) 

with k as an arbitrary positive constant, it holds ao(8) = bo(8). This means the opti
mum choice in the sense that in the assymptotic case A ~ 00 already the first iteration 

Collection Czechoslov. Chern. Commun. [Vol. 44] [1979J 
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gives the accurate result. For finite values A- the difference between the gradients 
of functions G2 and G1 is of the order of magnitude A- -1/3 i.e. for large values of A

it is very small. It is possible to expect that the differences of gradients of the third 
and higher iterations from the preceding ones will be even smaller by orders of magni
tude. Thus we have not continued with the calculation of the next iterations. For 
gradient of concentration C we thus obtain the approximate formula 

(oCfOY)y=o ~ (oC2/oy)y=0 ~ A-1 /3(bo(.9) + b1(.9)A-1/3), 

bo(.9) = J(.9)/(;)6 . E) = 0·61628 '](.9), 

b1(.9) = E1/(4E2
) • (3 - cos2 .9/]3) + 0'180/(E .])3 . (- ~ cos.9 - (18) 

-t]3 + cos 2 .9/]3 + t sin2 .9/J3) = 

= 1/]3(0'53839]3 + 0'16917/]3 + 0·42561 cos.9 + 0·50751 . cos2 .9/]3), 

where the symbol En denotes the integral 

En = f~ xD 
• exp ( - x 3

) dx, n = 0, 1, 2, ... , E = Eo . (19) 

The next term b2 (.9) A- -2/3 of the series (16) in the approximate formula (18) is not 
given as its values probably change in the third iteration and for the sufficiently 
large values of A. and not too small .9 are negligibly small. 

It can be seen from Table I that the values of b1(.9) are unreliable for angles smaller 
than 80° and thus not suitable for numerical calculations. This is affected by the 
singularity in the point .9 = 0° as J(O) = O. The iteration procedure of solution 

TABLE I 

Values of Functionsj, bo, b i According to (l7b) and (18) 

SO j(S) bo(S) b 1(S) SO j(S) bo(S) b 1(S) 

10 0'14945 0·09210 100 1'15954 0'71460 0·56689 

20 0'29510 0'18186 110 1'22611 0·75562 0'52668 
30 0·43434 0·26767 120 1'28363 0'79107 0'50395 
40 0'56559 0'34856 130 1'33220 0·82100 0'49046 
50 0'68795 0 '42397 4'95248 140 1-37187 0·84545 0·48217 

60 0·80103 0·49366 1·99969 150 1·40268 0·86444 0'47702 
70 0'90469 0'55754 1' 15181 160 1'42467 0'87799 0'47391 
80 0·99894 0'61562 0'79819 170 1'43786 0·88612 0'47223 
90 1'08385 0·66795 0·64274 180 1·44225 0·88882 0'47171 
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1224 Kimla, Micka: 

defined by Eq. (11) can be applied also for angles smaller than 80° but in the theoreti
cal calculation of the gradient it is not possible to transfer its expression by the infinite 
series according to powers A - 1/3. The direct calculation of gradients would be too 
complex and cumbersome thus we have used the series (16) also for smaller angles with 
the smaller values of A as empirical and we have used it for evaluation of coefficients 
b1(9) and bl (9) of the results obtained by numerical solution of the given boundary 
problem (see § Numerical Solution). At the end of this chapter we are giving the values 
of constant bo 

bo = - bo(9) sm 9 d.9 ~ 0·62457 , If" . 
2 0 

(20) 

which will be needed for calculation of the total diffusion flux toward the sphere 
around which the liquid flows . 

Analytical Solution for Small A 

Expression of the concentration gradient in the form of a series 

resulting from solution of the differential Eq. (4) for large values A looses obviously 
its substantiation for small A. The region of very small values of A has only a small 
practical significance as it usually concerns only very tiny streaming velocities which 
are at normal laboratory conditions hindered or even overcome by natural convec~ 
tion. Nevertheless situations can also arise where exist even the very small values 
of A without hindering effect of natural convection e.g . dissolving of micro'scopic 
gaseous bubbles, dissolving of microscopic solid particles. Moreover it is also theoreti
cally interesting to study the shape of the diffusion flux toward the sphere in the 
whole range of values A which have physical meaning i.e. A E <0, 00). For this reason 
we have started with the study of the boundary problem (4), (5a,b) for A ~ 1. 

Thus let us assume that 0 < A ~ 1. Then it is possible to consider the terms in the 
differential Eq. (4) including A as perturbation terms and to assume that the solution 
will be an analytical function of the parameter A in the right neighbourhood of zero, 
thus that 

(21) 

By substitution of this series into Eq. (4) and by comparison of coefficients with the 
zeroth and first power of A we obtain 

(22) 
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a2c 1/ay2 + (1 + yt 2 
• a2c 1/a[j2 + 2(1 + yt 1 

• acl/ay + 

+ cotg 8. (1 + yt 2 
• aC I /a8 = P'(y) cos 9. aco/ay . 

1225 

(23) 

The function Co is thus identical with the function C for A. = ° i.e. for the zero flow 
rate. Thus it is independent of angle 8 and this fact was respected in Eq . (22). Its 
solution under the conditions (5a,b) is 

(24) 

In Eq. (23) we introduce the variabJe e by substitution 

e = 1[/2 - 8. (25} 

As 8 E <0, 1[) is e E < -1[/2,1[/2) . Eq. (23) than takes the form 

a2cl/ay2 + (1 + yt 2 
• a2cl/ae 2 + 2(1 + yt l . acl/ay -

- tg e(l + yt 2 
• acl/ae = Prey) sin e(l + yt 2 

• (26) 

From the form of differential Eq. (26) results, that function C I is an odd function 
of angle e. Also the gradient (acl/ay)y=o has this property and thus the contribution 
to the total diffusion flux originating from the function C1 equals zero. This 
means physically that this contribution to the total diffusion flux on the impact part 
of the sphere is just compensated by the loss on the turned away part of the sphere. 
Therefore the non-zero contribution to the diffusion flux in comparison to the 
standstill state can be caused by the function C2 . For the total flux Q then it holds 

(27) 

From here results that the convective component of the diffusion flux Q is at very 
small velocities negligible. This is because if it is expressed as a function of para
meter (0 = A. 1/

3 which plays an important role in the region A. > 1 (see e.g. (I6)) 
its value is approximatelly proportional to (0 6 . 

Dependence of Diffusion Flux on Velocity Profile 

In our previous computations we have assumed that the velocity profile of the forced 
flow in the vicinity of the sphere around which the liquid flows is determined by Eqs 
(3a,b). This assumption is well satisfied for very small Reynolds numbers from which 
in standard situations results that also the Peelet number A. is relatively small. This is 
because it holds 

A. = avID = av/v.v/D = Re.v/D, (28) 
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where v is the dynamic viscosity of flowing solution. For Re numbers close to one 
the relations derived by Stokes (3a,b) are already not satisfactory. There are known 
more accurate solutions4

-
6 whose application for solution of the diffusion problem 

would lead to great complications. These more precise solutions have the advanta
geous property that in close vicinity of the surface they merge with the Stokes solution. 
This results in the natural question how great is the effect of coefficients in the dif
ferential Eq. (4) including the velocity profile i.e. functions P r , Pa on solution or how 
the solution of this equation will change if we proceed from the velocity profile 
(3a,b) to the new ODe characterized by functions Pr and Pa in agreement with the 
conditions 

lim P.(y)/Pr(Y) = lim Pa(Y)/Pa(Y) = 1 . 
y-o y-o 

Thus we hav/! solved the given diffusion problem at the hypothetic profiles 

where 

PlY) = }Z2 - (t + (\) Z3 + <>1Z4 , 

Pa(Y) = }Z - (i + <>2) Z2 + (t + 15 2 ) Z3 , 

Z = y/(l + y) . 

(29) 

(30) 

The functions Pr and Pa were formed by modification of functions Pr and Pa given 
after the formula (D3) so that there were satisfied both conditions (29) and condi
tions lim Pr(y) = lim Pa(y) = 1. 

y-+oo y-+cx> 

The functions Pr and Pa are not characterizing the solution of the hydrodynamic 
problem of flow around the sphere but they satisfy the basic physical requirements 
expressed by the given limiting conditions. 

Applying the same procedure as in the analytical solution with the Stokes profiles 
we have obtained 

where (J is introduced in (D27)) 

00(9) = bo(9) , 01(9) = b1(9) + (Ab 1)r + (Ab 1)a, 

(Ab 1)r = <>i(9/(EJ)3 . (! cos 9 + (1 + 3 cos2 9)/P) J -

-iE1/E2 . (1 + 3 cos2 9)/r), 

(Ab 1)a = <>2( -9/(Ef)3 . (r/9 + t cos 9 + (1 + 3 cos2 9)/r). J + 

(31) 

+ iE1/E2 . J- 6 
• (1 + 3 cos2 9 + P/3 . cos 9 - r/3)) . - (32) 
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From these equations it results that the chosen changes of the velocity profile affect 
only the second and next terms in formula (18) while changes of the second term 
are proportional to quantities c5 1 , c5 2 . In the numerical evaluation of these changes, 
we have chosen c5 1 and c5 2 so that the maximum deviations of modified profiles 
(30) from the Stokes ones accounted for 10% which occurs for c5 1 = 0'6, c5 2 = 0·5. 

In Table II are given values of (ilb1)r and (ilb 1h and the percentage changes Pr 
and Pa of the gradient C caused by the changes of the coefficient b l for A = 1000. 

From the results given in Table II results a serious fact that solution of Eq. (4) 
with respect to changes in the velocity profile is very stable as the 10% change in this 
profile is causing in average 8times smaller changes in the gradient for A = 1000. 
For greater values A the percentage changes would be even smaller. This fact seems 
to us very significant also from a more general point of view as a similar situation 
occurs in studies of various operations described by differential equations with the 
approximatively determined coefficients, resp. boundary or initial conditions. For 
these reasons we have performed the numerical solution of the given problem by the 
Stokes approximation of the velocity profile. 

Numerical Solution of the Differentia l Equation for Convective Diffusion 

For numerical solution of the differential Eq. (4) with the boundary conditions 
(5a,b) we have chosen the net method. The given equation has been approximated 
by the difference equation so that we have substituted the corresponding partial 

TABLE II 

Changes of Some Quantities Resulting from Changes in the Velocity Profile 

9° -(MI)r -(Llbl)a -Pr -Pa -CPr + Pa) 

90 0·0638 0·0316 0·888 0'440 1' 328 

100 0·0689 0·0306 0·902 0'400 1'302 

110 0·0786 0·0246 0·976 0'306 1'282 

120 0'0882 0·0181 1·050 0·216 1'266 

130 0·0993 0·0123 1'107 0'142 1'249 

140 0'1027 0'0077 1·149 0·086 1'235 

150 0'1074 0·0043 1·177 0·047 1'224 

160 0'1107 0·0019 1·195 0·020 1·215 

170 0·1126 0·0005 1·205 0·005 1'210 

180 0·1132 1'208 0 1'208 
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derivations by difference terms with the total accuracy having the order of magnitude 
h2 where h is the step of the net. The condition (5b) was approximated by the condi
tions 

C(Yo, 9) = 1 for 80° ~ 9 ~ 180° , 

C(y, 80°) = 1 for Yo ~ Y ~ 2yo, 

C(2yo, 9) = 1 for 30° ~ 9 ~ 80° , 

C(2Yo,200) = 0·9576 , 

C(2yo, 10°) = 0·6307 , 

where Yo = 3·6 A -1 / 3. The value Yo was chosen so that the absolute difference between 
the selected boundary values and the approximate theoretical values resulting from 
the formula (Dll) for the asymptotic case A ~ 00 would be smaller than 10- 3 . 

So we have substituted for the infinite region on which the problem (4), (5a,b) is 
solved by the finite region according to Fig. 2. Moreover we have chosen 

in agreement with the physical model. The described finite region was covered by the 
net with the steps hy = Yof24, 119 = 100. 

The formed system of linear equations for values of function C in the grid-points 
of the net was solved by the relaxation method with the relaxation coefficient r = 
= 0·5. The initial iteration was again estimated according to formula (Dll). In tot!!! 
480 iterations have been calculated satisfying the condition 

max IC~~80) _ C~~79)1 < 10- 5 , 

i,k 

where the significance of used symbols is obvious. The calculation has been performed 

1801-----.., 

80 

FIG. 2 

o y Yo 2}b 
Region for the Net Method 
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on the computer ICL 4-72 individually for A 1/ 3 = 6,8, 10, 15,20,25,30,36,40 and 
cyclically both for ,{1 / 3 = 6, 5, 4, 3, 2, 1 and for A 1/ 3 = 10, 15, 20,25,30,36,40. 
In cyclical evaluation we have made computations for ,{ 1/ 3 = 6 or 10 as the source 
and the last iteration for the given A 1/ 3 as the initial iteration for the following value 
,{ 1/ 3. 

For the estimate of the difference between the solutions of the differential and dif
ference equations we have have applied the estimate of errors according to Runge. 
Thus we have performed the computation for A1

/
3 = 6, 8,10 with steps twice as long. 

We have calculated from the obtained function values C in the grid-points the 
approximate concentration gradients on the surface of the sphere according to the 
formula . 

8Cj8y(0, khs) ~ 1j(12hy) (-25Cok + 48Clk - 36C2k + 16C3k - 3C4k) , 

k = 1,2, ... , 18 . 

So calculated values of the gradient C were then used for determination of the total 
diffusion flux toward the sphere 

(33) 

where 

I = - (8C j8y)y=o. SIn 8 d8 . 1 In . 
2 0 

(34) 

The value I was determined by numerical integration. We have found by the Runge 
estimate of errors that the concentration gradients for individual angles are calculated 
with the average accuracy 0'2% with the exception of values for 8 ~ 20°, the total 
flux Q with the accuracy 0·025%. Considerable increase in the accuracy in calculation 
of Q was caused by compensation of errors of the gradient C for individual angles. 

In Table III are given values of coefficients b1(8), bi8) in the empirical formula 

(35) 

where the values of the coefficient bo(8) were taken from the analytical solution 
(Table I) and coefficients b1(8), b2(8) were calculated by use of relative differences. 
The choice of formula (35) is justified at the end of the first paragraph. From numeri
cal evaluation results that Eq. (35) fits well also for angles 8 < 80° and A ~ 8. 
It is suitable to apply it separately in two regions i.e. ,{ 1/ 3 E <2, 10> and,{ 1/ 3 E (l0, 40>. 
It results from Table III that the values of coefficients b1(8), b2(8) for ,{1 / 3 E <2,10> 
have - contrary to expectation - smoother shape than for the second region as 
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Eq _ (35) should suit better for larger A_ This fact has two reasons: 1) Absolute errors 
of gradient C and thus the values b J (8), b2 ( 8) as well, are greater for the second re
gion at the same percentage error 0-2%_ For example at uniform distribution of errors 
to the second and third terms in Eq_ (35) are for 8 = 900 possible these absolute 
errors: 

For ,1.1/3 = 5 is llb 1 = 0-004, llb 2 = 0-019; for ,1.1/3 = 25 is llb 1 = 0-017 and 
llb2 = 0-430_ The results given in Table III demonstrate that the errors are smaller 
in the average_ 2) Visible fluctuation of values b1(8) and b2(8) for ,1.1 / 3 E (10, 40> 
is probably affected by the coefficient at aClay in Eq_ (4) whose values in the 
neighbourhood of 900 suddenly change due to the term -A cos 8 P.(y)_ This term 
has less profound effect for smaller values of A. 

Comparison of theoretical values bJ (8) of Table I with the numerical results 
(Table Ill) demonstrates a fair agreement for angles greater than 900

_ 

In Fig_ 3 are graphically plotted theoretical diffusion layers with their thickness d 
calculated by use of the numerically obtained results according to the formula 

a- 1 = (aCfay)y=o _ 

TABLE III 

Values b1 (8) and b2(8) 

2 ~ ).1 /3 ~ 10 1O ~ ).1 / 3 ~ 40 

80 b 1 (8) b2(8) b1(8) b2 (8) 

10 0-4643 0-2053 0-2828 1-9221 
20 0-3579 0-5592 0-3379 0-4904 
30 0-4372 0-3260 0-4790 -0-0616 
40 0-4445 0-2899 0-4873 -0-3142 
50 0-4750 0-1 831 0-5435 -0-5689 
60 0-4745 0-1689 0-5186 -0-3361 
70 0-4871 0-1139 0-5478 -0-4949 
80 0-4896 0-0899 0-5235 -0-3445 
90 0-4890 0-0774 0-5458 - 0-5570 

100 0-4802 0-0950 0-5076 - 0-1868 
110 0-4850 0-0674 0-5358 -0-5739 
120 0-4769 0-0828 0-4898 -0-0613 
130 0-4802 0-0653 0-5253 -0-4252 
140 0-4746 0-0763 0-4814 -0-0206 
150 0-4762 0-0667 0-5161 -0-3951 
160 0-4733 0-0744 0-4923 -0-2269 
170 0-4716 0-0828 0-4965 -0-2377 
180 0-4787 0-0704 0-4887 -0-0501 
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From the total diffusion fluxes calculated by use of Eqs (33), (34) for individual 
values A we have for Q analogically obtained the next empirical relations 

Q = 4rca2co D(0'6246A 1/ 3 + 0·4745 + 0'l30lA -1 / 3) pro }, 1/ 3 E <2, 10> , 
(36a) 

Q = 4rca2co D(0'6246A 1/ 3 + 0·5140 - 0·3187). -1 /3 ) pro A 1/ 3 E (1 0, 40> , 
(36b) 

The coefficient bo = 0·6246 has been taken from the analytical solution (see Eq. (20)). 
The use of empirical formula (36a) can be extended even to A 1/ 3 E <1, 2> approximatel
ly with the 1% error. By direct net method calculation we have obtained for )' = 1, 
Q = 4rca 2coD . 1'2427, while from Eq. (36a) we obtain Q = 4rca2coD . 1·2292. 

For physical reasons it is obvious that the dependence of quantity Qj4rca 2coD 
on ).1 / 3 will be smooth in the interval <0,1 >. Thus it is possible to complete by graphi
cal extrapolation this dependence with a sufficient accuracy where directly cal
culated numerical values are not available. The described numerical calculation gives 
results which are not as good as those obtained by extrapolation because the con
vective components of diffusion in the extrapolated region are relatively small. 
Calculation of more accurate values would be very cumbersome which was considered 
uneconomical with regard to smaller significance of this region . 

In Fig. 4 are plotted the dependences of quantities aejay (0,9) for 9 = 20°, 90°, 
180° and quantites Y = Qj4rca 2coD on A 1/ 3 for the region 0 ~ A ~ 1000. In the 
neighbourhood of zero we have used formula (27), for A ~ 1 the numericaIIy cal
culated values of gradient on the surface or of the over-aIl diffusion flux toward the 
sphere. 

Finaly it could be concluded that the final equations (36a,b) are, when we take 
into consideration the errors due to empirical evaluation in the considered regions, 

FIG. 3 

Diffusion Layers 
}.: 1 0, 2 1, 3 125, 4 1000. 
The arrows denote the flow directi ~n. 
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affected by the maximum error 0·1%, Eq. (36a) used in the interval A1
/
3 E <1, 2) 

by the error 1%, which in our opinion is quite satisfactory with regard to experimental 
possibilities at various applications. 

APPENDIX 

COMPUTATION OF THE GRADIENT OF FIRST ITERATION AND CHOICE OF FUNCTION f 

From Eqs (14) and (13) results 

(Dl) 

We express approximately the integral in the denominator of Eq. (Dl) for large 
values of Peclet number A. At first we calculate the integral in the exponent. From 
comparison of Eqs (8) and (9) results 

A(u) = j2 + U')2 u2jU + U)2, 

B(u) = 2f2/U + u) - Af cos 9 P.(u/f) + f. !"u/U + U)2 + 

+ !'u/U + u) . A sin 9 Ps(ujf) + f. !'u/U + u)2 . cotg 9, 

where functions P r and Pi! are defined after Eq. (4). It is necessary to realize that 
functions A and B include also the variable 9 which we have neglected for simplicity 
also in the argument of function f and in their derivatives. Into the integral ~' -

f: B(t)jA(t) dt 

FIG. 4 

Graphs of Functions Z = (oCjoy) (0, 8) 
and Y 

Z for 8 420°, 2 90°, 1 180°; 3 Y. 
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we introduce the variable z by substitution 

z = (t/f)/(1 + (t /f)) or t/f = z/(1 - z) 

and denote 

(w/f)/(1 + (w/f)) = x . 

So functions Pr and Ps take the form 

Pr(z/(1 - z)) = lz2 - 1Z3, Ps(z/(1 - z)) = lz - tz2 + tz3 . 

f:B(t)/A(t)dt = f:[2(1 - z) - Acos9(1Z2 -1Z3) + f-I1"(Z - Z2) + 

+ f-I1'}, sin 9(1Z2 - iz3 + tz4) + f-I1'(Z - Z2). cotg 9]/ 

/(1 + (J-I1')2 z2)(1 - z)2 . dz. 

1233 

(D2) 

(D3) 

From substitution (D2) it is obvious that 0 ~ z < 1 and thus we can use the binomic 
expansion 

(1 - zt2 (1 + (J-l1')2 z2t1 = (1 + 2z + 3z2 + ... )(1 - (J-t1'Y Z2 + ... ) = 

= 1 + 2z + (3 - (J-I1')2 Z)2 + .... 

By substitution, arrangement and integration we obtain 

f:B(t)/A(t) dt ~ 2x + (1 + 1"/(2f) + 1'/(2f) . cotg 9) x2 + 

).f2 . (J'/f. sin 9 - cos 9) x3 + ),/4. (!1'/f. sin 9 - -1 cos 9) X4 + 

+),/5. (13/4. 1'/f. sin 9 - t cos 8 + l(J-l1'Y cos 8 - 1(J-I1')3 sin 8) x5 
• 

(D4) 

Now we start with the computation of integral in the denominator of Eq. (D!). 
We introduce a new variable s by substitution (see D3)) 

s = yx = Y . (w/f)/(1 + (w/f)) , CD5) 

where 

l = )./2.(J'/f.sin9 - cos9). (D6) 

After arrangement with the use of the binomic expansion and expansion of the ex-
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ponential function we obtain the approximation including the terms up to the order 
r 2/3 after the integral sign > 

f~exp( - tWB(t)/A(t) dt)dW ~ fly f:[1 - ~S4/y - (J"/(2f) + 

+ f'/(2(). cotg 9) S2/y2 - (13/10 - ~(J-If'Y) S5/,,/ + 81/128. S8/y2 + 

+ ),/16 . cos 9. S4/y4 + )'120. cos 9. S5/y5 - 9/128. A cos 9. S8/y5 + 

+ ),2/512. cos2 9. S8/y8] exp (_S3) ds. (D7) 

In integration in (D7) there appears the sum of several first terms of the series in po
wers of A -1/

3
. The integrals of the form 

(D8) 

will appear in their coefficients while in the limiting case En( 00) = En (see (19». 
By substitution into (DI)and repeated use of the binomic expansion there originates 

(see (15)). 

Now we determine the function f. We start with the requirement that the second 
iteration G2 should differ from the first iteration G1 as little as possible. This hap'pens 
obviously in the case when F 1 introduced generally after Eq. (11) will be in the abso
lute value as small as possible. As we consider the case of rather large values of A we 
can approximate 

(DIO) 

To be able to express Flit is necessary to know the iteration G 1 given in Eq. (13). 
If the integral in the numerator of the quoted formula is calculated by the method 
described in the above given part of this study with the first two terms of the cor
responding expansions used, we obtain 

G1(u, 8) ~ rl/3{E(~) + y-l( -9/8 + A cos 9/(16y3)) E4(~)} / 

r{E(y) + y-l( -9/8 + A cos 9/(16y3)) E4(Y)} , (Dll) 

where 

~ = y(ulf)/(1 + (u/f» . (DI2) 
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For large value of }, the values of yare also large according to (D6) and thus it holds 

£ - E(y) = f~exp (_S3) ds = exp (_y3)/(3 y2) -

- ~f<Xls-3exp(-s3)dS < y-2.texp(_y3), 
3 y 

which is the quantity proportional to ;.,- 2h . Similar result can be derived also for dif

ference E4 - E4(Y)' so that in the denominator of the formula (D 11) can be at the given 
approximation order the numbers E(y), E4(Y) substituted by values £, £4' If we now 
calculate iJGt/iJ9, we obtain after arrangements with the accuracy ,1.-1 

iJG1/iJ9 ::::! ;"-1/3/E2. [E exp (_~3)~' + (EE4(~) - E4E(~) . 

. ((9y')/(8y2) - ,1./16 . (y sin 9 + 4y' cos 9)/y5) + 

+ exp (-~3H'/y . (~4E - E4)(A cos 9/(16l) - 9/8)J, (DJ3) 

where 

~' = ~(y' /y - 1'/f) + 1'/f . e /y , (D14) 

as results from (Di2). The expression for iJG1/iJ9 in (DJ3) includes a single term 
of the order ,1. - 1/3 which is r 1/3/E. exp (_~3) ~(y'/y - 1'/f). If this term equals 
zero which can occur only under the condition 

y'/y - 1'/f = fly . (yjf)' = 0, (DJ5) 

the function F1 will satisfy the above given requirement. Thus the ratio y/f must be 
constant. For simplification of other computations we choose 

yjf = k/V2 ~ konst . . (Di6) 

By substitution into (D6) we obtain the differential equation for the function f 

"(DI7) 

which is solved2 by introduction of a new function h by substitution 

f(9) = sin 9jh(9). 

At the condition fen) #- 0 from which results hen) = 0, we obtain the formulae 
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(I7a,b) . If we substitute into (DI6) for fthe term from formula (17a) then 

y = 1(A/6) .}(9). (DIS) 

With the use of relations (DI), (D7), (D9), (lla) and (DIS) we obtain for coefficients 
in the series (D9) the relations 

ao(9) = fI(E ·16), a1(9) = E1/(4E2) . (3 - cos 9/J3) , 

ai.9) = 16/UE2) . [11/960 - t(J'/f)2 + if"/f + if'/f. cotg 9 + (DI9) 

+ 29/160. cos 9/J3 - 3/64. cos 2 9/]6 + Ei!(16E) . (3 - cos 9/]3)2] . 

CALCULATION OF THE GRADIENT OF SECOND ITERATION 

For second iteration G2 it holds according to Eq. (11) 

(D20) 

where F 1 can be approximated by the relation (DJO). It is useful to introduce the 
difference 

for which according to (12) and (D20) holds 

(D21) 

with the boundary conditions 

H(O, 9) = lim H(u, 9) = O. (D22) 

By solution we obtain 

H(u, 9) = L I~xp (- f: BfA dt) dw + 

+ J:[exp ( - f:B/Adt)f:F1/A.exp(IB/Adr)dt]dw, (D23) 

where 
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According to Eq. (14) it holds for the gradient of second iteration 

From (D23) it results 

(OC2 /OY)y=o = A 1/3(oG2/ou)u=o . f(9) = 

= ,11 / 3 f(9). (oGl/ou + oH/ou)u =o. (D25) 

After calculation of (oG l /o9)u from the approximation (Dll) and substitution into 
( DIO) we obtain (variable ~ introduced in (DI2)) 

F1(u, 9) ~ _!A2/3 sin 9 . ~/()'E)2 . [iF /f. Ee exp (_~3) + 

+ ,1/48 . E)'-3~2 exp (- ~3) (sin 8 + 4),'/), . cos 9) + 

+ (1;)" /), - ,1/(24),3) (sin 9 + 4),' /), . cos 9)) (E . El(~) - EIE(~))] . 

By the analogous procedure as in derivation of the gradient of the first iteration 
we obtain 

(oH/o u)u=o = L ~ tA -1 / 3 f-l(E . J)-3[(J3 - (1 + 3 cos2 9)/]3 + t cos 9) . J + 

+ E. E1/36. (5J3 + 3(1 + 3 cos 2 9)/]3 + 19 cos 8)] = r l
/

3 f-l(9). b(8) , 

(D26) 
where 

If we substitute the first two terms of expansions (16) and (15) and (D26) into (D25) 
we obtain 

and from there 

So we have proved the statements following Eq. (16) in the main part of this paper 
and formulae (18) are verified where for the appearing integrals are substituted 
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numerical values. Moreover it holds 

lim (iJGz/iJy)y=o = lim (bo(.9) + bl (.9) . r 1/ 3) = bo(.9) , 
I.-a) A-OO 

which means that for sufficiently large values A the concentration gradient for the 
given .9 is proportional to the quantity f(.9): 
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